This year’s tenth International Interconnect Technology Conference (IITC), planned for early June at the San Francisco airport, comes 10 years after IBM and Motorola researchers announced plans to use copper interconnects. A decade of chemical-mechanical polishing later, the chip industry is looking at several ways to extend the reach of copper/porous low-k interconnects to the 32-nm node.
Interestingly, a look at the paper abstracts shows that many of the more interesting papers this year are from Japanese companies. Fujitsu has a paper on nano-clustering silicon (NCS) dielectrics, which were tested on 45-nm test structures. Creating thin barrier layers and using the NCS dielectrics, the Fujitsu researchers claimed an 86 percent reduction in resistance-capacitance delays.
Researchers from Sony and Toshiba will go to the IITC with separate papers on hybrid dual-dielectric schemes, which put one dielectric at the bottom of the vias, and the other at the top. These processes also form the barrier and copper seed layers in one step, and could reduce process complexity.
Sony used a manganese oxide barrier layer with lower resistance than tantalum. MnO has several other benefits: fewer stress-induced voids, longer electromigration lifetime, and no pore-sealing process. These self-formed barrier layers do not adhere at the bottom of the vias, which reduces resistance.
The Sony researchers combined an MnO barrier with a copper-silver alloy for the metal lines, and found advantages, compared with the conventional tantalum barrier layer with copper for the 32-nm back end of the line.
A paper from NEC also looks at the barrier layer challenge, replacing tantalum with a ruthenium/tantalum nitride liner. Copper can be plated directly on ruthenium without creating an interface layer between the two, reducing complexity.
IBM researchers will go to the IITC with an approach which electroplates rhodium as the contact plugs in high-aspect ratio devices. Rhodium has lower resistivity than either tungsten or copper,  and rhodium plugs can be made thinner as CMOS scaling proceeds.
Before the more radical shifts to air gaps, optical, and carbon nanotubes, these researchers point to improvements in the interconnect stack -- bringing in new metals and kicking out old ones -- at the 32-nm node and beyond.  
 
Next

International Interconnect conference brings new metals to the back end of the line

  1804      Nov 30, -0001
This year’s tenth International Interconnect Technology Conference (IITC), planned for early June at the San Francisco airport, comes 10 years after IBM and Motorola researchers announced plans to use copper interconnects. A decade of chemical-mechanical polishing later, the chip industry is looking at several ways to extend the reach of copper/porous low-k interconnects to the 32-nm node.
Interestingly, a look at the paper abstracts shows that many of the more interesting papers this year are from Japanese companies. Fujitsu has a paper on nano-clustering silicon (NCS) dielectrics, which were tested on 45-nm test structures. Creating thin barrier layers and using the NCS dielectrics, the Fujitsu researchers claimed an 86 percent reduction in resistance-capacitance delays.
Researchers from Sony and Toshiba will go to the IITC with separate papers on hybrid dual-dielectric schemes, which put one dielectric at the bottom of the vias, and the other at the top. These processes also form the barrier and copper seed layers in one step, and could reduce process complexity.
Sony used a manganese oxide barrier layer with lower resistance than tantalum. MnO has several other benefits: fewer stress-induced voids, longer electromigration lifetime, and no pore-sealing process. These self-formed barrier layers do not adhere at the bottom of the vias, which reduces resistance.
The Sony researchers combined an MnO barrier with a copper-silver alloy for the metal lines, and found advantages, compared with the conventional tantalum barrier layer with copper for the 32-nm back end of the line.
A paper from NEC also looks at the barrier layer challenge, replacing tantalum with a ruthenium/tantalum nitride liner. Copper can be plated directly on ruthenium without creating an interface layer between the two, reducing complexity.
IBM researchers will go to the IITC with an approach which electroplates rhodium as the contact plugs in high-aspect ratio devices. Rhodium has lower resistivity than either tungsten or copper,  and rhodium plugs can be made thinner as CMOS scaling proceeds.
Before the more radical shifts to air gaps, optical, and carbon nanotubes, these researchers point to improvements in the interconnect stack -- bringing in new metals and kicking out old ones -- at the 32-nm node and beyond.  
 
About weVISION: weQuest's are written by G Dan Hutcheson, his career spans more than thirty years, in which he became a well-known as a visionary for helping companies make businesses out of technology. This includes hundreds of successful programs involving product development, positioning, and launch in Semiconductor, Technology, Medicine, Energy, Business, High Tech, Enviorntment, Electronics, healthcare and Business devisions.

You may like this also:

Andrea Lati
18 October, 2019
Mike Cowan
11 October, 2019
Andrea Lati
11 October, 2019
Andrea Lati
04 October, 2019
Risto Puhakka
02 October, 2019

Workstations and Distributed Computing

Virtual Desktop Infrastructure will be computing in the cloud. Multiple computers can be located on a single VDI, while PSE Infrastructure would require additional hardware.

David Meyer
01 October, 2019

Standardization on AI and Big in China

Functional & Performance Test for Big Data Products. It has become an industry-widely recognized authoritative test, Push big data platforms from project services.

Shirly ZHANG
30 September, 2019
Andrea Lati
27 September, 2019

Recent weVISIONs

Open IC Design Platforms ... with Michael Wishart of Efabless
Michael WishartEfabless
20 August, 2019
Tom Caulfield on what's next at GLOBALFOUNDRIES
Tom CaulfieldGLOBALFOUNDRIES
22 July, 2019