Organic Photovoltaic (opv) Modules For The Empower Of Autonomous Indoor Sensors

Organic Photovoltaic (opv) Modules For The Empower Of Autonomous Indoor Sensors

Loading
Loading Social Plug-ins...
Language: English
Save to myLibrary Download PDF
Go to Page # Page of 16

Description: Exponential Number Of Applications, Fields Of Industrial And Environmental Monitoring, Energy Management, Building And Home Automation. The Vim Experimental Set Up: The Variable Illumination Measurements (vim) Method Consists Of Scanning The Iv Curve Under Logarithmically Varying Illumination Levels. Comparison Of Opv And Others Technologies For Indoor Applications.

Good Voc In Indoor Conditions For Si-a On Glass And Opv On Flex. Lighting Remote Control: Continuous Charge Of The Batteries Thanks To Opv Modules. Pcb For The Power Management With Low Consumption Components.

 
Author: Noella Lemaitre  | Visits: 344 | Page Views: 564
Domain:  High Tech Category: Semiconductors 
Upload Date:
Link Back:
Short URL: https://www.wesrch.com/electronics/pdfEL1SE1000AFQW
Loading
Loading...



px *        px *

* Default width and height in pixels. Change it to your required dimensions.

 
Contents:
ORGANIC PHOTOVOLTAIC (OPV) MODULES FOR THE EMPOWER OF
AUTONOMOUS INDOOR SENSORS
S. BAH, A. BARBOT, M. MANCEAU, G. VANNIER, N. LEMAITRE, M. MATHERON, S. BERSON

October, 26th 2016
FOR 154 F - INES

|1

CONTEXT: INTERNET OF THINGS



IoT = 3rd revolution of internet
Exponential number of applications, fields of industrial and environmental monitoring,
energy management, building and home automation




Major Concern = Powering and autonomy of these objects, wireless
Need of ENERGY HARVESTING

FOR 154 F - INES

Lemaitre Noëlla | 2

ORGANIC PHOTOVOLTAIC MODULES
Flexible
Radius 10 cm

Lightweight

Polychromatic modules
Color: blue, green, purple

Semi-Transparency

< 1kg/m²

Ultra Thin

Customization

< 1 mm

Dimensions, shapes, voltage, current

 Technology mature for integration
FOR 154 F - INES

Lemaitre Noëlla | 3

PRINTED ORGANIC PHOTOVOLTAIC MODULES LABORATORY


Selection of materials & optimization of architecture
Top electrode (Silver, Aluminium, Ag NWs)
P layer (PEDOT:PSS, WO3)
Active layer (Polymers, Organometallic Materials)
N layer (ZnO, TiOx)
Transparent Conducting Electrode (Oxide, Ag NWs)
Flexible plastic substrate

Active Materials

Devices

Substrate

Active Area (cm²)

Efficiency (%)

Cell (lab.)

PET

0.13

> 9%

Module

PET

100

> 5%

Polymer:PC60BM



Development of printing processes on larger surface
PCE 4,3%

PCE 5,2%

15cmx15cm
FOR 154 F - INES

PCE 4,9%

10cmx10cm
5cmx5cm

Lemaitre Noëlla | 4

CUSTOMIZATION

• Structure of modules:


PET / TCO / EIL / Active layer/ HTL /Ag

• OPV Modules realized by laser ablation : GFF > 80%

• Patterning of the transparent electrode (P1)
• Patterning of the stack ETL/CA/HTL (P2)
• Patterning of the top electrode (P3)

FOR 154 F - INES

Lemaitre Noëlla | 5

DIMENSIONING THE SYSTEM

• Tuning the electrical output


Series connection

• Optimization with 2nd
generation polymers

Polymer

PCE (%)

P (W/m²)

P3HT
(Ref)

2.5 %

23

OPV1

5.0 %

46

OPV4

5.3 %

49

Vmax, Pmax in
function of the
application
FOR 154 F - INES

Lemaitre Noëlla | 6

WHAT ABOUT LOW LIGHT PERFORMANCES?

• Performance measurement





PCE (%) = Pmpp / Pinput
Under one SUN AM1.5: Pinput = 1000 W/m²
Variation of the inpunt power: VIM studies
Under low light: response not linear, function of the intensity and of the light
source

• Indoor Sources



LED, fluorescent lamp, neon tube
From 200 lux to 1000 lux

Brightness factor Y(λ)

1,2
1

Conversion of electrical power
(irradiance in W/m²) to
illuminance in lux

0,8
0,6
0,4
0,2

E (lux) =

0
-0,2 0

500

Wavelength(nm)
FOR 154 F - INES

1000

1500


𝟎

𝑭 𝝀 𝒀 𝝀 𝒅λ

Lemaitre Noëlla | 7

THE VIM EXPERIMENTAL SET UP

Encapsulated
OPV
Cell

From 1.2.103 to 10-2 W/m²

The Variable Illumination Measurements (VIM) method consists of scanning the
IV curve under logarithmically varying illumination levels
FOR 154 F - INES

Lemaitre Noëlla | 8

LED VIM STUDIES OF DIFFERENT TECHNOLOGIES

• Linearity of the curent in

• Vmpp evolution under low

function of the Pinput

light

1
0,01

0,1

1

10

100

1000

1,4

10000

1,2
1

Vmpp (normalisée)

Impp (normalisé)

0,1
0,01
0,001
0,0001

0,8
0,6
0,4
0,2

0,00001

0
0,000001

0,01

0,1

1

10
P (W/m²)

100

1000

10000

P (W/m²)

Polycristalline Si ; Si-a on glass (optimised for indoor);
Si-a on flex; CIGS on flex; OPV on flex

FOR 154 F - INES

|9

COMPARISON OF OPV AND OTHERS TECHNOLOGIES FOR
INDOOR APPLICATIONS

• Test at 220 lux
Fluorescent lamp
7,0
6,0

P max
(µW/cm²)

Neon tube
6,0

P max
(µW/cm²)

4.71

5.28
5,0

5,0
4,0
4,0
3,0

1.85

3,0

1.87
1.44

1.87

2,0

2,0
1,0
1,0
0.00
0,0

0.05

0.01

0.05

0,0

Polycristalline Si ; Si-a on glass (optimised for indoor);
Si-a on flex; CIGS on flex; OPV on flex

FOR 154 F - INES

Lemaitre Noëlla | 10

COMPARISON OF OPV AND OTHERS TECHNOLOGIES FOR
INDOOR APPLICATIONS

• Test at 220 lux
Fluorescent lamp

Neon tube

0,7

0,7

Voc (V)
0,6

Voc (V)

0.59

0.58

0,6

0.41

0.41

0,5

0,5

0,4

0,4

0,3

0,3
0.16

0.14

0,2

0,2

0,1

0,1
0.03
0.00
0,0

0.04
0.00

0,0

Polycristalline Si ; Si-a on glass (optimised for indoor);
Si-a on flex; CIGS on flex; OPV on flex

 Good Voc in indoor conditions for Si-a on glass and OPV on flex
FOR 154 F - INES

| 11

SYSTEM INTEGRATION

• Modules for lighting remote control




Modules 8 strips 25 x 50 mm
PCE ~ 4.8% under 1 SUN
Indoor efficiency: 1.9 to 9.7 mw/cm²
Voc (V)

5
4
3,84

3

Pmax (μW/cm²)

4,27
12

3,29

2

10

1

8

0

9,66

6
Démo 1
néon 220 lux

néon 500 lux

4
1000 lux néon+ext

Vmax (V)

2

4,80
1,87

0
Démo 1

3
néon 220 lux

2,5
2,35

2
1,5

néon 500 lux

1000 lux néon+ext

2,63

1,96

Neon tube 220 lux; Neon tube 500 lux,
Neon tube + ext light 1000 lux

1
0,5

0
Démo 1
FOR 154 F - INES

néon 220 lux

néon 500 lux

1000 lux néon+ext

Lemaitre Noëlla | 12

SYSTEM INTEGRATION

• LIGHTING REMOTE CONTROL



Continuous charge of the batteries thanks to OPV modules
PCB for the power management with low consumption components



Improvement of the autonomy
@ DECOPV Project

Consumption: off 0,304 mA
on 6.5 mA
FOR 154 F - INES

Lemaitre Noëlla | 13

OTHER EXAMPLE OF INTEGRATION

• Wall control for roller shutter





2x Laser modules 8 strips PCE~3.4%
Central zone for the position control (up/stop/down)
Wireless system
Same behaviour in low light

@ DECOPV Project

FOR 154 F - INES

Consumption: off 0,340 mA
on ~15 mA

Lemaitre Noëlla | 14

CONCLUSIONS AND PERSPECTIVES

• Good behaviour of flexible OPV under low light (200 to 1000 lux)
• Good response for the different sources (fluorescent lamp, LED…)
• Integration in system possible
• Aging studies in indoor? Definition of standards?
• Perovskite?
Active Materials

Devices

Substrate

Active Area (cm²)

Efficiency (%)

Polymer:PC60BM

Cell (lab.)

PET

0.13

> 9%

Glass

0.13

> 18%

PET

0.28

> 9%

Perovskite

Cell (lab.)

Pmax (Perovskite cell)= 15.2 to 17.7 mW/cm² and Voc (Perovskite cell)= 608 to 616 mV
under 220 lux (fluo or neon)

FOR 154 F - INES

Lemaitre Noella | 15

ACKNOWLEDGEMENTS

CEA – Printed OPV Modules
Laboratory

THANK YOU
FOR YOUR ATTENTION

Commissariat à l’énergie atomique et aux énergies alternatives

Alternative Energies and Atomic Energy Commission
17 av des martyrs F-38000 GRENOBLE France
http://liten.cea.fr
Établissement public à caractère industriel et commercial
Public establishment with commercial and industrial character
RCS Paris B 775 685 019

INES Site
Institut National de l’Energie Solaire
National Solar Energy Institute
50 avenue du lac Léman
F-73375 Le Bourget-du-Lac France
+33 4 79 79 20 00