Plant Medicine and Veterinary Potential of Antimicrobial Peptides Produced by Entomopathogenic Nematode Symbiotic Bacteria

Plant Medicine and Veterinary Potential of Antimicrobial Peptides Produced by Entomopathogenic Nematode Symbiotic Bacteria

Loading
Loading Social Plug-ins...
Language: English
Save to myLibrary Download PDF
Go to Page # Page of 47

Description: INTRODUCTION- Antibiotics-resistance of pathogenic organisms emerged as a new challenge to plant protection, veterinary and even human clinical practice. The antibiotic multidrug-resistance can be overcome by anti-microbial compounds of totally different mode of action. Biocontrol potential of antimicrobial peptides produced by EPB), Xenorhabdus budapestensis (EMA) and X.

szentirmaii (EMC) is discussed in this presentation. This EPN bacterium (EPNB) is carried into the blood cavity (hemocoel) of insect hosts by a specific transmission (infective dauer juvenile, IJ) stage of the nematode. These bacteria could easily be isolated and cultured in the laboratory both in solid and liquid media, both in small and larger scale and test for antagonistic antimicrobial actibities.

EPNB ON LBTA INDICATOR PLATES- Once there, the nematode releases the bacteria, which then express immune suppressive and virulence factors that kill insects. Then, within the insect cadaver, bacterial activity promotes degradation of insect tissues and deters competitors (including opportunistic non-host nematodes). Thus, as part of their lifecycle, EPNB obligatorily interact with and influence the physiologies of competing micro-organisms, nematode parasites, and insects, largely through the production of bioactive proteins and small molecules.

MATERIALS AND METHODS- After detaliled comparison of EPNB species, strains and isolates from the aspect of their antagonistic activity toward different test tarhets, w ...Please navigate Paper pages for more details.

 
Author: András Fodor, J. Racsko, J. Hogan, D. Vozik (Fellow) | Visits: 1952 | Page Views: 1984
Domain:  Medicine Category: Veterinary Subcategory: Pharmaceuticals 
Upload Date:
Link Back:
Short URL: https://www.wesrch.com/medical/pdfME19LMO31SMDN
Loading
Loading...



px *        px *

* Default width and height in pixels. Change it to your required dimensions.

 
Contents:
Plant medicine and veterinary
potential of antimicrobial peptides
produced by entomopathogenic
nematode symbiotic bacteria
András Fodor1
J. Racsko1, J. Hogan1, D. Vozik2
L. Makrai3, F., Olasz4,
H. Goodrich Blair5
Fodor et al., BABE_2014

1

INTRODUCTION
• Antibiotics-resistance of pathogenic organisms
emerged as a new challenge to plant protection,
veterinary and even human clinical practice.
• The antibiotic multidrug-resistance can be
overcome by anti-microbial compounds of totally
different mode of action.
• Biocontrol potential of antimicrobial peptides
produced by EPB), Xenorhabdus budapestensis
(EMA) and X. szentirmaii (EMC) is discussed in
this presentation.
Fodor et al., BABE_2014

2

é

Fodor et al., BABE_2014

3

• This EPN bacterium (EPNB) is carried into
the blood cavity (hemocoel) of insect hosts
by a specific transmission (infective dauer
juvenile, IJ) stage of the nematode.
• These bacteria could easily be isolated
and cultured in the laboratory both in solid
and liquid media, both in small and larger
scale and test for antagonistic
antimicrobial actibities.
Fodor et al., BABE_2014

4

EPNB ON LBTA
INDICATOR PLATES

Fodor et al., BABE_2014

5

• Once there, the nematode releases the bacteria,
which then express immune suppressive and
virulence factors that kill insects.
• Then, within the insect cadaver, bacterial activity
promotes degradation of insect tissues and
deters competitors (including opportunistic nonhost nematodes).
• Thus, as part of their lifecycle, EPNB obligatorily
interact with and influence the physiologies of
competing micro-organisms, nematode
parasites, and insects, largely through the
production of bioactive proteins and small
molecules.
Fodor et al., BABE_2014

6

MATERIALS AND METHODS
• After detaliled comparison of EPNB species,
strains and isolates from the aspect of their
antagonistic activity toward different test
tarhets, we found that two species,
Xenorhabdus budapestensis and X.
szentirmaii have outstandind antimicrobial
potential.

Fodor et al., BABE_2014

7

Figure 5 Interspecific differences between Xenorhabdus strains tested
on the Klebsiella pneumoniae (mastitis isolate, #696) (Photo: A., M.,
Fodor; 2006)

Fodor et al., BABE_2014

8

Figure 3 Xenorhabdus budapestensis (left) and X.
budapestensis (right) inhibition zone on E. coli (Photo:
Andrea Máthé-Fodor, 2010)

Fodor et al., BABE_2014

9

MATRIALS: Antimicrobial producers
and test organisms
• This study focuses mainly on the
bacterium Xenorhabdus budapestensis
which is the obligate symbiont of the EPN
Steinernema bicornutum and pathogen of
insects.
• Some data on X. szentirmaii, a strain
which had already been sequenced are
also presented.
Fodor et al., BABE_2014

10

METHODS:
1. Overlay bioassay, (Furgani et al.,, 2008)
2. Agar diffusion method
• Cell-free conditioned medis (CFCM) in the center
aktivitásának vizsgálata
• Size of inactivation zone, depends on:
Diffusin speed
Concentration of active compound(s)
Sensitivity of the test organism

Production of CFCM, (see Böszörményi et al., 2009):
(CFCM – cell-free conditioned media)





Increasing of the lscale in liquid LB media, [1] [2] [3] [4]
Centrifuge at 13000 rpm, 20 perc, RTR
Filtration on (Millipore Stericup Filter Unit, 0.22 µm)
Storage at , 4 oC hőmérsékleten

Fodor et al., BABE_2014

11

METHODS: BIOASSAYS USED BY US
(OVERLAY) BIOSSAY
X. budapestensis (EMA, left),
X. szentirmaii (EMC, right)

AGARDIFFUSION TEST:
Foto: Fodorné Máthé Andrea


A. Curtobacterium flaccumfaciens pv. betae
NCAIM B 01612: EMA („Észak”) EMC („dél”).



B.: Xanthomonas axonopodis pv.
phaseoli NCAIM 1523;

• C.: Dyckeya chrysanthemi NCAIM B
01839;
• D.: Erwinia amylovora (Ea1) Hevesi
Mária.


Foto: Dr. Mária Hevesi.

Fodor et al., BABE_2014

12

RESULTS
• Xenorhabdus budapestensis (AF 2013), a strain
with impressive antimicrobial potential.
• X. budapestensis culture cell free supernatant has
antimicrobial activity against mastitis isolates [1],
wild type and antibiotic resistant strains of the
plant pathogen Erwinia amylovora [2],
• the eukaryotic potato pathogen Phytophthora
infestans, [2],
• multi-drug resistant Staphylococcus aureus
(MRSA) (Fodor and McGwire, in prep.), and
closely related EPNB strains [3].
Fodor et al., BABE_2014

13

X. budapestensis culture cell free supernatant has
antimicrobial activity against mastitis isolates [1],

Fodor et al., BABE_2014

14

SUCCESFUL EXPERIMENTS ON
EPB strains
(Lengyel et
al., 2005)
• X. budapestensis
EMA
• X. szentirmaii
• EMC*












Escherichia coli B (OF-323);
E. coli K12 (OF-319;
E. coli TG1 (OF-290);
E. coli TG90 (OF-630);
Salmonella enteritis (OF- MA-1504)
Salmonella enteritis NCAIM B 02186;
Salmonella typhimurium NCAIM B 02212;
Campylobacter coli NCAIM B 02255;
Campylobacter jejuni NCAIM B 02254;
Clostridium perfrigens NCAIM B 01417;

• Ralstonia solanacearum 1226 és 879
Fodor et al., BABE_2014

15

ANTIMICROBIAL ACTIVITIES OF
X. BUDAPESTENSIS ON MASTITIS
ISOLATES

Fodor et al., BABE_2014

16

Inhibition diameter in mm of Xenorhabdus budapestensis
on the phytopathogenic bacteria overlaid on LBA media
plates with four replications

Fodor et al., BABE_2014

17

RESULTS OF AGAR DIFFUSION BIOASSAYS OF
SOME PLANT PATHOGENIC BACTERIA

Fodor et al., BABE_2014

18

Xenorhabdus budapestensis (AF2013, EMA) as a potential tool of
controlling Ralstonia. Vozik, D., J. Bélafi-Bakó, K., Hogan, J. Racsko, A.
Fodor at al., 2014)

• Abstract





Rastonia solanacearum is a pathogen causes bacterial wilt in potato and other
Solanaceum species, which has been considered as one of the most significant
epidemic disease in plant medicine. The potential of using antibacterial substances
from entomopathogenic nematode-symbiotic bacterium strains Xenorhabdus
budapestensis (EMA) and X. szentirmaii (EMC) in Ralstonia control has been
studied. We have elaborated reproducible methodology to quantitate (1) optimum
inoculum size needed for successful Ralstonia infection in plant experiments; (2)
the minimum phytotoxic concentration and (3) the minimal Ralstonia inhibiting
concentration of EMA cell free conditioned medium (CFCM) in vitro. At the light
of the results we consider the antibacterial component(s) of EMA CFCM potential
tool(s) of Ralstonia control.
Keywords: X. budapestensis, R. solanacearum, antimicrobial activity, antibiotic
resistance, phytotoxicity
Fodor et al., BABE_2014

19

SENSITIVITY OF
Ralstonia solanacearum
1226 virulent strain on
EMA CFCM substances in
overlay bioassay (Photó:
Dr. Mária Hevesi

Fodor et al., BABE_2014

20

RESULTS
1. Overlay bioassay (Method: Furgani et al., 2008)

EMA / Rs. 1240

EMC / Rs. 1240
EMA (60 V/V%) / Rs. 1240 - agardiffúziós
teszt

2. Agardiffusion test
EMA

Teszt-baktérium:

Rs.1240

EMA
CFCM (V/V
%)
5
10
15
20
30
40
50
60
80
100

REPLICATES diam of inactivation
zone in mm
12
13
14
14
15
16
17
17
18
19

11
12
13
14
15
16
16
17
17
18

11
12
13
14
15
15
16
16
17
18

Avera
ge

s

11,3
12,3
13,3
14,0
15,0
15,7
16,3
16,7
17,3
18,3

0,58
0,58
0,58
0,00
0,00
0,58
0,58
0,58
0,58
0,58

Fodor et al., BABE_2014

21

RESULTS
3. Antibiotikum-sensitivities of R. solanacearum 1240
S = érzékeny
R = rezisztens

4. In planta infection test (R. solanacearum 1240 – on potato seedlings)
DILUTION:
O/N Rs.1240
Baktérium
szuszpenzió (ml)
(OD: 1,050 ;
CFU/ml: 6*108)
10X hígított bakt.
szuszp. (ml)
100X hígított bakt.
szuszp. (ml)
autoklávozott
csapvíz (ml)
Abszorbancia
(λ = 620 nm)

1
8

0.5
4

0.25
2

10(-1)
1

10(-2)

10(-3)

10(-4)

0

Dilution: autokclaved tap water
2 replicates (test tubes) in each doses
2-3 plants / test tube
1-5 stages of sickness (visual observation)
1=healthy plant; 5= destroyed plant

0.9
0.9

0.08

0

4

6

9

8.1

8.1

7.92

8

1,050

0,585

0,306

0,126

0,014

0,005

0,002

0,000

1
1
3
4
5

0.5
1
2
3
5

0.25
1
2
3
5

10(-1)
1
1
2
5

DILUTION:
DAY 0
DAY 3
DAY 6
DAY 18

10(-2)
1
1
1
2

Fodor et al., BABE_2014

10(-3)
1
1
1
1

10(-4)
1
1
1
1

0
1
1
1
1

22

RESULTS
6. Bactericid effect of EMA CFCM on R/ solanacearum RS 1240
EMA CFCM (V/V%)
O/N Bacterium Suspension
(OD: 0.866 ; CFU/ml: 4,9*108)
Autoclaved tap water (ml)
EMA CFCM (ml)
CFU/ml (0)
CFU/ml (2 óra után)
CFU/ml (4 óra után)
CFU/ml (6 óra után)
CFU/ml (8 óra után)
CFU/ml (24 óra után)

0

5

10

15

20

25

2.0

2.0

2.0

2.0

2.0

2.0

6.0
0
1,2*108
lawn
lawn
lawn
lawn
lawn

5.6
0.4
1,2*108
465000
405000
340000
80000
25000

5.2
0.8
1,2*108
250000
75000
70000
10000
-

4.8
1.2
1,2*108
220000
60000
40000
16000
-

4.4
1.6
1,2*108
45000
25000
16500
4500
-

4.0
2.0
1,2*108
20000
15000
fertőzött
fertőzött
fertőzött

EMA CFCM (V/V%)

30

35

40

45

50

75

O/N Bacterium Suspension
(OD: 0.866 ; CFU/ml: 4,9*108)
EMA CFCM (ml)
EMA CFCM (ml)
CFU/ml (0)
CFU/ml (2 óra után)
CFU/ml (4 óra után)
CFU/ml (6 óra után)
CFU/ml (8 óra után)
CFU/ml (24 óra után)

2.0

2.0

2.0

2.0

2.0

2.0

3.6
2.4
1,2*108
10000
5000
2500
-

3.2
2.8
1,2*108
10000
-

2.8
3.2
1,2*108
-

2.4
3.6
1,2*108
5000
2500
-

2.0
4.0
1,2*108
5000
500
-

0
6.0
1,2*108
5000
-

• Dilution: with autoclaved tapwater
• Incubation> 110 rpm; 28 oC-on
• Plating and colony counting on LBA plates (at 2nd,; 4th; 6th; 8th; 24 th hrs

Fodor et al., BABE_2014

23

DAY 0

DAY 6, INFECTED
DAY 18,
INFECTED

DAY 18, NOT
INFECTED

Fodor et al., BABE_2014

24

DAY 0

DAY 6

DAY 18

Fodor et al., BABE_2014

25

RESULTS
5. PHYTOTOXICITY OF EMA CFCM
EMA CFCM (V/V%)
EMA CFCM (ml)
AUTOCLAVED TAP
WATER (ml)

100
8
0

75
6.0
2.0

50
4.0
4.0

40
3.2
4.8

30
2.4
5.6

20
1.6
6.4

10
0.8
7.2

0
0
8

Dilution: autokclaved tap water
2 replicates (test tubes) in each doses
2-3 plants / test tube
1-5 stages of sickness (visual observation)
1=healthy plant; 5=totally destroyed plant
EMA CFCM (V/V%)
DILUTION:
DAY 0
DAY 3
DAY 6

100

75

50

40

30

20

10

0

1
2
3
5

1
1
3
5

1
1
2
5

1
1
1
5

1
1
1
5

1
1
1
5

1
1
1
3

1
1
1
1

Fodor et al., BABE_2014

26

RESULTS
6. Bactericid effect of EMA CFCM on R/ solanacearum RS 1240
EMA CFCM (V/V%)
O/N Bacterium Suspension
(OD: 0.866 ; CFU/ml: 4,9*108)
Autoclaved tap water (ml)
EMA CFCM (ml)
CFU/ml (0)
CFU/ml (2 óra után)
CFU/ml (4 óra után)
CFU/ml (6 óra után)
CFU/ml (8 óra után)
CFU/ml (24 óra után)

0

5

10

15

20

25

2.0

2.0

2.0

2.0

2.0

2.0

6.0
0
1,2*108
lawn
lawn
lawn
lawn
lawn

5.6
0.4
1,2*108
465000
405000
340000
80000
25000

5.2
0.8
1,2*108
250000
75000
70000
10000
-

4.8
1.2
1,2*108
220000
60000
40000
16000
-

4.4
1.6
1,2*108
45000
25000
16500
4500
-

4.0
2.0
1,2*108
20000
15000
fertőzött
fertőzött
fertőzött

EMA CFCM (V/V%)

30

35

40

45

50

75

O/N Bacterium Suspension
(OD: 0.866 ; CFU/ml: 4,9*108)
EMA CFCM (ml)
EMA CFCM (ml)
CFU/ml (0)
CFU/ml (2 óra után)
CFU/ml (4 óra után)
CFU/ml (6 óra után)
CFU/ml (8 óra után)
CFU/ml (24 óra után)

2.0

2.0

2.0

2.0

2.0

2.0

3.6
2.4
1,2*108
10000
5000
2500
-

3.2
2.8
1,2*108
10000
-

2.8
3.2
1,2*108
-

2.4
3.6
1,2*108
5000
2500
-

2.0
4.0
1,2*108
5000
500
-

0
6.0
1,2*108
5000
-

• Dilution: with autoclaved tapwater
• Incubation> 110 rpm; 28 oC-on
• Plating and colony counting on LBA plates (at 2nd,; 4th; 6th; 8th; 24 th hrs

Fodor et al., BABE_2014

27

Experiments in Columbus with Dr. Bradford McGwire.
Effects of CFCM of EMA, EMC és X. innexii on different
clinical pathogens

Fodor et al., BABE_2014

28

EMA CFCM ON SOME PLANT PATHOGEN Erwinia amylovora
(left) and Alternaria alternata (right)
• Erwinia amylovora (Ea1)
dose-dependence in in
agar diffusion test

Alternaria alternata gomba
mycelium growth is inhibited, in
poisoned PDF agar)

Photo: Dr. Mária Hevesi.

Photo: Dr. Csaba Pintér /
Fodor et al., (Zakria Favzi, MSc. Theses)
BABE_2014

29

Biological Control of Plant pathogenic fungi
Effect of cell-free conditioned media (CFCM) of X. szentirmaii
on the mycelial growth
Sejtmentes X. szentirmaii médium hatás myceliumok növekedésére
P. citricola

Sejtmentes (25 V/V% )
EMC-fermentlé

Kontrol
(Sárgarépa- agar)

(Fotó: Pintér, Cs., 2011)
Fodor et al., BABE_2014

30
30

EREDMÉNYEK - 2
• A Clostridium perfringens
NCAIM 1417 törzse
rárétegzéses és
agardiffúziós tesztekben
egyaránt érzékeny a
• X. budapestensis és a
• X. szentirmai
antibakteriális
aktivitásával szemben.
• Fotó: X. budapestensis
agar-difffúziós tesztben C.
perfringens NCAIM 1417
ellen. Dr. Pintér Csaba
Fodor et al., BABE_2014

31

DISCUSSION
• Our goal has been to exploit the potential of
the active antmicrobial compounds of X.
budapestensis against plant and animal
pathogens.
• One of the discovered very active microbial
compound in X. budapestensis is the
hexapeptid Bicornutin A
• Let us make a short comparison with our
finding with the literature of AMPs.
Fodor et al., BABE_2014

32

Antimicrobial peptides – a general discussion
• Organisms of different taxa produce antimicrobial
peptides. Their general biological role is self-defense.
• Each peptide of known antibacterial activity (AMP)
is of cationic (positively charged) and amphipathic
nature. It is also true for most antiviral, anti-parasitic
and antifungal peptides.
• The targets of these peptides as well as of their mode
of actions are rather different.
• There are great differences between their
targetspectra of different AMPs.
Fodor et al., BABE_2014

33

Molecular structures of antimicrobial peptides
Jenssen, et al. Clin Microbiol Rev. (2006 )19:491-511.
(A) Human β-defensin-2 (PDB code
1FQQ)
(B) (B) Loop-like structure of thanatin
(PDB code 8TFV) ;
(C) (C) β-laminal structure of
polyphemusin (PDB code 1RKK)
(D) (D) Rabbit defensin-1 (PDB code
1EWS) 165); [65]
(E) (E) α-helical structure of magainin-2
(PDB code 2MAG) (76);
(F) (F) Relaxed structure of indolicidin
(PDB code 1G89) [66] . The disulfide
bridges are yellow. The pictures were
created by a Mol Mol 2K.1 [67]
graphic program.
Fodor et al., BABE_2014

34

STRUCTURE – ACTIVITY RELATIONS
• The molecular basis of the mode of action of
antimicrobial peptides is based on non-specific
structural changes in the target membranes followed
by rapture.
• The mode of action of AMP has largely been
determined by the membrane structure of the target
cells.
• At present 5 models of mode of action has
unambiguously confirmed while others are
hypothetical
Fodor et al., BABE_2014

35

Fodor et al., BABE_2014

36

MODE OF ACTION OF AMPs
• The target cell membrane (yellow) is a lipid double
layer.
• The peptide molecules are labeled as little cylinders.
• Hydrophilic parts of the molecules are labeled as red,
while the hydrophobic ones are labeled as blue.
• The peptide-glucose membrane components are labeled
as purple cylinders.
• Models A-D described the consequences of the changes
in the permeability of the target cell membranes.
• Models E-I show the effects on the biosynthesis and
structural rearrangements (protein folding, for instance)
of the macromolecules in the target cells
Fodor et al., BABE_2014

37

OUR RESULTS AT THE LIGHT OF THE
LITERATURE
• In the last years have been focusing on EPB
virulence factors of EPB [16-23] with special attention
to exploit the antimicrobial potential of two EPB
(Xenorhabdus budapestensis and X. szentirmaii [24]
species identified by us and use them for controlling
plant pathogenic purposes).
• Gram positive pathogens, such as Staphylococcus
aureus and Clostridium perfringens pathogens proved
even more sensitive to EPB antimicrobials than the
Gram-negative ones (Fodor et al., in preparation).
Fodor et al., BABE_2014

38

OUR RESULTS AT THE LIGHT OF THE LITERATURE

• There are not many publications related to EPB
antimicrobial peptides could be found in the literature.
This provides an advantage but also a great challenge and
needs an inventive approach and scientific creativity.
• The fact that the Helix BioMedix Company has
intensively working on hexapeptide (putative) drugs in
order to use them in lipid dense environment such as
blood sera against bacterial and fungal pathogens. Several
of theses hexa-peptides are in pre-clinical stage
Fodor et al., BABE_2014

39

THE ANTIMICROBIAL COMPOUNDS OF X.
BUDAPESTENSIS ARE ANTIMICROBIAL
PEPTIDES
• In our previous experiments in the last decade these
compounds proved active both in Gram-positive and
Gram-negative bacterium pathogens (Clostridium
perfringens, multi-resistant pathogenic E. coli and
Salmonella strains as well as in eukaryotic pathogens
such as Eimeria tenella (Dr. Klaus Teichmann et al.,
Biomin, unpublished), Alternaria alternata, Phytophthora
infestans (Fodor et al., in preparation).
• In the nature the bacterial partner of the
entomopathogenic nematode (EPN) / bacterium (EPNB)
symbiotic complexes produces antimicrobial peptides
(AP) to protect the monoxenic EPN/EPB system in the
cadaver in polyxenic (soil) conditions.
Fodor et al., BABE_2014

40

FINAL CONCLUSIONS
• We described several important plant and veterinary
pathogenic organisms, (belonging to Gram (+) and (-)
bacterium, oomycetal, fungal, and Protista species)
susceptible to the native cell-free conditioned media
(CFCM) of X. budapestensis in vitro.
• We discovered a different activity of CFCM on
closely related species [31]
• Whether the AMPs would or would not be developed
to plant protective products capable of controlling the
most harmful eukaryotic and prokaryotic plant, - and
animal pathogens, and overcome multiple antibiotics
resistance will be decided at the end of the project.
Fodor et al., BABE_2014

41

BICORNUTIN A: A NATURAL COMPOUND
OF STRONG ANTIMICROBIAL ACTIVITY
• One active component (bicornutin A,) produced by X.
budapestensis had been identified [26-28] by us. Other
]
researchers also found antibacterial peptides in X.
budapestensis [30] and others in X. szentirmaii [31].
]
]
• Each AMP published so far has a larger molecular weight
and more amino-acid (AA) residua than the Bicornutin A
(discovered by us). The recent interest toward antimicrobial
sexta-peptides (see below) however, indicates the
perspectives of our project proposal.
• Many antimicrobials are synthesized through the
action of non-ribosomal peptide synthetases (NRPS)
with modular structures. We intend to dicover the the
genes responsible its biosynthesis
Fodor et al., BABE_2014

42

POTENTIAL TO OVERCOME ANTIBIOTICS POLY-RESITANCE
• The cell-free conditioned culture media (CFCM) of
both species exerted cytotoxic activity on to mastitis
isolates [25], prokaryotic (E. amylovora) and on
eukaryotic (Phytophthora sp.) plant pathogens [26],
coliform Gram-negative pathogens of veterinary
importance independently of their antibiotics resistant
profiles (Fodor et al., in preparation).
• The wild type and antibiotics resistant variants of the
target species (E. emylovora, E. Coli, Salmonella,
Agrobacterium) are equally sensitive to them [26].
They proved poly-resistant pathogens (S. aureus
MRSA) (Fodor and McGwire, in preparation).
Fodor et al., BABE_2014
43

PLANT PROTECTION POTENTIAL
We propose further efforts toward developing application
technology of EPB antimicrobial peptides against









Fire blight (Erwinia amylovora)
Potato blight (Phytophthora infestans);
Plant diseases caused by
Clavibacter,
Curtobacter,
Xanthomonas and
Ralstonia species.
Fodor et al., BABE_2014

44

VETERINARY POTENTIAL
• As for veterinary application, we found that all studied strains of
independently of their resistance to other antibiotics
• Aeromonas hydrophila
• Bacillus cereus
• Corynebacterium pseudotuberculosis
• E. coli
• Salmonella
• Listeria monocytagenes
• Pasteurella multicida
• Rhodococcus equi
• Streptococcus equi
• Staphylococccus areus
• Bordatella bronchoseptica
• Klebsiella pneumoniae –
• Proved sensitive to CFCM (BicornutinA) of X. budapestensis.
Fodor et al., BABE_2014

45

God as an artist: polyiodinin exo-crystals produced
by X. szentirmaii

• X. szentirmaii colony
surfacs felszín (Foto:
Dr. Pintér Csaba) and
exocrystal (Fotó: F.
Máthé Andrea)

Fodor et al., BABE_2014

46

THANKS TO VALENT BIOSCIENCES FOR
FINANCIAL SUPPORT
• This work is a result of 11-years cooperation of
scientists from Hungary and the USA.
Experiments have been executed at the
following laboratories:
• Ohio State University, Department of Animal
Sciences, Wooster OH 44691 USA
• University of Pannonia, Georgikon Faculty,
Keszthely and Veszprém, Hungary
• Szent István University, Department of
Microbiology, Budapest, Hungary
Fodor et al., BABE_2014

47